
Neural Dynamic Programming  

for Musical Self Similarity 

Christian Walder 
1,2  

with Dongwoo Kim 
2 

1
 Data61 

2
 Australian National University



Overview
• Background: Models of Symbolic Music 

• representation and sequence models 

• limitations 

• canonical example model: prediction suffix tree 

• Modelling Goals 

• Model: Simplified Setup 

• autoregressive / “method of analogy” with edit distance  

• Model: General Setup 

• generalised edit distance 

• forecasting by analogy 

• Edit Tree 

• basic idea 

• comparison with suffix tree 

• Summary / Outlook



Background:  

Models of Symbolic Music



Symbolic Music Models

1

2

3
4 6

5

• Convert to a sequence, e.g.

• Exploit the chain rule: 

• Apply a sequence model, typically the LSTM 



Why This is Lacking

• The holy grail of RNNs is long term dependence: 

• LSTM style additive updates help 

• memory remains highly limited in practice 

• With a short memory we learn simple regularities: 

• predict the immediate future from the immediate past 

• Longer term we only capture simple regularities like musical key 

• We mainly compare the recent past to  

• similar scenarios in our training set 

• (rather than autoregression, i.e. comparing to similar scenarios in the current piece) 

• Those models that do autoregression rely on simple exact matching (next slide)



data: pieces  

  of music

soup of  

(subsequence, next symbol)  

pairs

amnesiac music: compares  

the suffix of previous output 

to the soup of training data 

fragments

D



Example Sequence Model: 
Prediction Suffix Tree

h(S(1 : i)) = sign

0

@

X

k:S(i−k:i)∈T

f(S(i− k : i))

1

A

• f: nodes → scores 
• h forecasts the next symbol 
• Example: 

• T = {ε, -, +, +-, ++, -++, +++} 

• f: see the figure 
• S(1:6) =(-,-,+,+,+,+) 
• forecast: S(7) =  sign(-1+4+7)=+1

The Power of Selective Memory: Self-Bounded Learning of Prediction Suffix Trees.  

Ofer Dekel, Shai Shalev-Shwartz, Yoram Singer 

NIPS 2005



Modelling Goals



What Real Music Looks Like (1)

current time

p
re

v
io

u
s
 t
im

e

Darker ~ More Similar (edit distance)



• By analogy with first two cycles: 
• the last two notes should repeat immediately 

• In the third cycle of the motif we observe: 
• a non-trivial musical shift of the upper notes

Bach's Cello Suite No. 1 in G major: Prelude

What Real Music Looks Like (2)

https://www.youtube.com/watch?v=jpFj-h1sKvs


1, 4, 9, 16, ___ 

1, 64, 9, 100, 25, 16, ___ 

1, 7, 2, 9, 1, 7, 2, ___ 

1, 3, 1, 12, 17, 101, 103, 101, 112, ___ 

      1, 3, 1, 12, 17, 101, 103, 33, 101, 112, ___ 

      1, 3, 1, 12, 17, … , 101, 103, 33, 101, 112, ___



We Need to Learn to 
Transform and Repeat

• The next note in a piece depends more on  

• the similarity relationship between the current suffix and the previously 
emitted substrings in the same piece  

• and less on  

• the similarity between the current suffix and the suffixes in the training soup. 

• The key is learning the transformations between subsequences within a piece. 

• This differs from the method of analogues which considers identity 
transformations (AFAIK). 

• Equivalently to the slide title: due to the chain rule we need to detect 
transformations from earlier subsequences to the prefix and analogise them.



Model: 

Simplified Setup



Simplified Setup
• Compare a suffix S( i - k : i ) to all previous suffixes, to forecast S( i + 1) 

• Consider all suffix lengths k 

• Use approximate matching with edit distance 

• already somewhat novel - see e.g. Dongwoo’s talk next week 

• models musical transformations: passing tone, substituted note, etc 

• results in self alignment 

• Assume history tends to repeat 

• This motivation is rather weak, but:  

• it is leading up to general model which achieves our stated goals!



Edit Distance
• The minimum total cost of edit operations (insertion, 

deletion, substitution) which transform one 

sequence P to another T

• Solved by the dynamic program 

• Seller’s modification:

S a t u r d a y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

u 2 1 1 2 2 3 4 5 6

n 3 2 2 2 3 3 4 5 6

d 4 3 3 3 3 4 3 4 5

a 5 4 3 4 4 4 4 3 4

y 6 5 4 4 5 5 5 4 3



Self Matching Forecast

• The minimum edit distance from S( i-k : i ) to S( : j ) 

satisfies the related recursion 

• Combine with the subsequent continuations (at j+1) 

to make the forecast (for i+1): 

• Considering D(i, j, k) = 0 only, gives a prediction  

suffix tree.

j j+1 i-k i ?



Model: 

General Setup



General Setup

• Retain the dynamic programming scheme for self 

alignment. 

• But, in the style of end to end deep learning: 

• infer all the components from data using gradient 

descent



Generalised Edit Distance

• Above: recursion for simple edit distances with ranging i, j, k as before 

• Let’s generalise: 

• symbols → learned embedding vectors 

• insertion/deletion/substitution cost → learned generalised cost function 
(vector) 

• scalar distance → generalised “distance” vector 

• addition → recurrent neural network update (GRU):  

Dnew = fA(Dold, cost) 

• min → arg max w.r.t. a learned score function

Ds(i, j, k) = min











c(si → ✏) +Ds(i− 1, j, k − 1)

c(si → sj) +Ds(i− 1, j − 1, k − 1)

c(sj → ✏) +Ds(i, j − 1, k).



Generalised Forecast: 
Analogy

• Current time i 

• Combine forecasts for all j, k, based on 

• the “distance” D(i, j, k) 

• the observed continuation sj+1 

• Simple case: if D(i, j, k) is small sj+1 is likely to reoccur 

• e.g. the prediction suffix tree 

• General case: analogy function



Analogy Function by Example

• 1, 3, 1, 12, 17, … , 101, 103, 33, 101, 112, ___ 

• k = 5 

• S( i-k+1 : i ) = 101, 103, 33, 101, 112 

• S( : j ) = 1, 3, 1, 12 

• Alignment: (1 → 101), (3 →103), (ε → 33), (12 → 112) 

• D(i, j, k): “high certainty add 100 transformation” 

• sj+1 = 17 

• Prediction “high certainty 100 + 17 = 117”

fG(D(i, j, k), fE(sj+1))



si+1|S(: i), . . . ∼ Discrete(fF (Oi))



Scoring Function

• Maps generalised distances to scalars 

• Performs three roles: 

• Alignment via arg max in distance recursion 

• Weighting of forecasts from analogy function 

• Pruning the edit tree (next slide) 

• This coupling is justified by ablative studies



Edit Tree



Edit Tree
• Edges: insertions/substitutions  

• Nodes: generalised distances 

• Paths: alignments 

• Approximation: prune using 

scoring function 

• Highlights the difference to 

prediction suffix trees etc. 

• Prediction requires a list of 

continuations sj+1 at each node.

(si → sj)

D0

D

(si → ε)



(A → T)(G → ε)

(C → ε)

CG

A

Suffix Tree Edit Tree



• Both are created on the fly for a sequence 

•

Suffix Tree Edit Tree

Fan Out
Linear  

(in the alphabet size)
Quadratic

Candidate Matching Paths 
for Prediction

One Many

All Candidates Relevant?
Yes (candidates are 

exact matches)
No (scoring function 

required)

Prediction
Direct Correlation 

(reoccurance)
General 
Analogy

Generalises the Other No Yes

Theoretical Guarantees? Yes Not Yet



Experiments



Toy Data:  
Visualising Self-Alignment

• Trained on noisy repeats of motifs 

• This example motif is 0,6,3,1 

• Brightness ~ match 

• Rows i = 5 to i = 8 align 

• Rows i > 8 average over two valid 
alignments 

• Insertion noise s11 handled



Toy Data

• A suite of test problems 

• MotifNet vs LSTM: 

• superior when there is self similarity 

• similar when there is not 

• Re-use of scoring function is crucial 

• allows training to succeed despite non differentiable arg max



Real Music Data

• Pruning of the edit tree 
does indeed trade 
speed and accuracy 

• With enough time we 
beat the LSTM 

• Proof of concept 
implementation:  
• scaling up required 

test set negative log likelihood



Summary / Outlook



Summary / Outlook
• Music involves a family of transformations between subsequences of the same piece 

• Local correlation (suffix tree, etc) methods cannot capture this.  

• HMM, LSTM, etc. can capture this in theory but not in practice. 

• We have a more explicit scheme which can capture it. 

• Suffix tree → edit tree 

• Correlation forecast → analogy forecast

• To do 

• Faster data structures and algorithms + more data → better machine music 

• Simplified models with more rigour  

• Genetics 

• Language: translation, tense changes etc. 

• Non sequence data: images etc.



Title: 

Neural Dynamic Programming for Musical Self Similarity  

Abstract: 

https://arxiv.org/abs/1802.03144 

We present a neural sequence model designed specifically for symbolic music. The model is based on a 
learned edit distance mechanism which generalises a classic recursion from computer science, leading to 
a neural dynamic program. Repeated motifs are detected by learning the transformations between them. 
We represent the arising computational dependencies using a novel data structure, the edit tree; this 
perspective suggests natural approximations which afford the scaling up of our otherwise cubic time 
algorithm. We demonstrate our model on real and synthetic data; in all cases it out-performs a strong 
stacked long short-term memory benchmark. 

Bio: 

Christian Walder obtained a Bachelor of Engineering from the University of Queensland, a PhD in machine 
learning from the Max Planck Institute in Germany, and seven years' industrial experience applying 
advanced analytics in the finance and telecommunication industries. He is presently employed as a senior 
researcher at Australia's governmental research, CSIRO Data61, and an adjunct Professor at the 
Australian National University. 

https://arxiv.org/abs/1802.03144

