
Edit Distance / Self Matching

• The edit distance is the minimum total cost of edit operations (insertions,

deletions, and substitutions) which transform one sequence P to another T

• It is computed by the dynamic program:

• With Seller’s modification, this allows searching within a longer string:

• Further slight generalisation of the dynamic program yields all self matches:

MotifNet Generalisation

Neural Dynamic Programming for Musical Self Similarity
Christian J. Walder 1, 2 and Dongwoo Kim 1, 2, 3

1 Data61, CSIRO, Australia 2 The Australian National University 3 Data to Decisions CRC, Kent Town, SA, Australia

Abstract

We present a neural sequence model designed specifically for symbolic music.

The model is based on a learned edit distance mechanism which generalises a

classic recursion from computer science, leading to a neural dynamic program.

Repeated motifs are detected by learning the transformations between them. We

represent the arising computational dependencies using a novel data structure,

the edit tree; this perspective suggests natural approximations which afford the

scaling up of our otherwise cubic time algorithm.

We demonstrate our model on real and synthetic data; in all cases it out-

performs a strong stacked long short-term memory benchmark.

What Real Music Looks Like

How do you expect the above sequence continue?

Answer:

by analogy with first two cycles, the last two notes may repeat immediately.

Note that in the third cycle of the motif above, we observe a non-trivial

diatonic (i.e. within musical scale) shift of the upper notes

More Sequence Completion Puzzles

The Basic (exact / slow) MotifNet

• Given the above generalised distances D(i, j, k), the penultimate layer is

where

and the forecast is given by .

Edit Tree

• The generalised distances D(i, j, k) are functions of an alignment sequence.

• This suggests the edit tree, which differs from a suffix tree as follows:

Experiments

!""See also our related poster !

Self-Bounded Prediction Suffix Tree via

Approximate String Matching

Hall B #112
S a t u r d a y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

u 2 1 1 2 2 3 4 5 6

n 3 2 2 2 3 3 4 5 6

d 4 3 3 3 3 4 3 4 5

a 5 4 3 4 4 4 4 3 4

y 6 5 4 4 5 5 5 4 3

Detecting and completing the pattern may be more

important than learning general short-sequence

regularities, for symbolic music!

Simplified Setup MotifNet

categorical symbol learned embedding vector

unit edit cost learned edit cost function

scalar distance generalised distance vector

distance ⃪ distance + cost distance ⃪ GRU(distance, cost)

dynamic programming min
arg max w.r.t.

learned scoring function

forecast by exact matching learned weighting function averaging

identity forecast analogy forecast

si+1|S(: i), . . . ∼ Discrete(fF (Oi))

Suffix Tree Edit Tree

Edges Symbols: si Matches: si → sj

Nodes Sequences Alignments

Fan Out Linear (in the alphabet size) Quadratic

Candidate Matching Paths for Prediction One Many

All Candidates Relevant? Yes (exact matches) No (scoring function required)

Prediction Direct Correlation (reoccurance) Analogy

Generalises the Other No Yes

Theoretical Guarantees? Yes Not yet

Studied? Yes; extensively No

Searching for exact self matches and
forecasting based on the subsequence
continuation, is a natural scheme which
generalises various models (context tree
weighting, prediction suffix trees, variable

order hidden Markov models..).

This is the key program control flow.
We generalise the entire setup by

replacing the constituent operations
with parameterised functions. The
parameters are learned end to end

via gradient based optimisation.

The analogy function is an important
component. If we have seen 1, 3, 1,
12, 17, then by analogy after 101,

103, 101, 112 we expect to see 117.

We prune the edit tree using a learned heuristic function, obtaining tractability!

1, 4, 9, 16, ___

1, 64, 9, 100, 25, 16, ___

1, 7, 2, 9, 1, 7, 2, ___

1, 3, 1, 12, 17, 101, 103, 101, 112, ___

1, 3, 1, 12, 17, 101, 103, 33, 101, 112, ___

1, 3, 1, 12, 17, … , 101, 103, 33, 101, 112, ___

Due to the chain rule of probability:

we can model transformed motifs

by comparing the current suffix with

all previous subsequences!

These are basic CPU-only experiments,

but we already improve on the LSTM.

Scaling up MotifNet seems promising!

	Neural Dynamic Programming for Musical Self Similarity

