

Neural Dynamic Programming for Musical Self Similarity Christian J. Walder ^{1,2} and Dongwoo Kim ^{1,2,3}

¹ Data61, CSIRO, Australia

 \star See also our related poster \star

Self-Bounded Prediction Suffix Tree via Approximate String Matching

Hall B #112

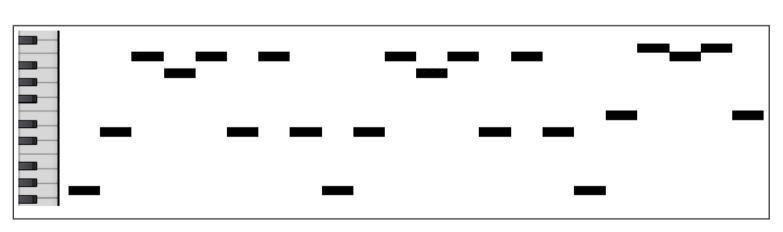
Abstract

We present a neural sequence model designed specifically for symbolic music. The model is based on a learned edit distance mechanism which generalises a classic recursion from computer science, leading to a neural dynamic program.

Repeated motifs are detected by learning the transformations between them. We represent the arising computational dependencies using a novel data structure, the edit tree; this perspective suggests natural approximations which afford the scaling up of our otherwise cubic time algorithm.

We demonstrate our model on real and synthetic data; in all cases it outperforms a strong stacked long short-term memory benchmark.

What Real Music Looks Like



How do you expect the above sequence continue?

Answer:

by **analogy** with first two cycles, the last two notes may repeat immediately.

Note that in the third cycle of the motif above, we observe a non-trivial *diatonic (i.e. within musical scale) shift of the upper notes*

> Detecting and completing the pattern may be more important than learning general short-sequence regularities, for symbolic music!

More Sequence Completion Puzzles

1, 4, 9, 16, ____ 1, 64, 9, 100, 25, 16, ____ 1, 7, 2, 9, 1, 7, 2, ____ 1, 3, 1, 12, 17, 101, 103, 101, 112, ____ 1, 3, 1, 12, 17, 101, 103, 33, 101, 112, ____ 1, 3, 1, 12, 17, ..., 101, 103, 33, 101, 112, ____

Due to the chain rule of probability: $p(S) = \prod p(s_{i+1}|S(:i))$ we can model transformed motifs

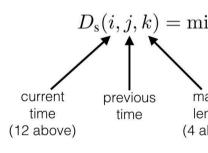
by comparing the current suffix with all previous subsequences!

• With Seller's modification, this allows searching within a longer string:

matcl

suffix

• Further slight generalisation of the dynamic program yields all self matches:



Simp

catego

un

scal

distance

dynamic p

forecast b

ident

² The Australian National University

³ Data to Decisions CRC, Kent Town, SA, Australia

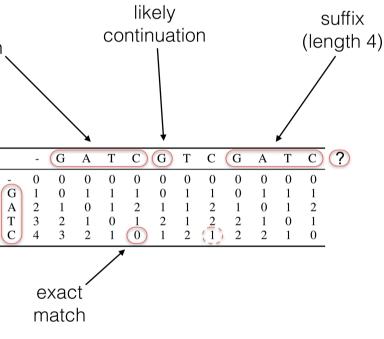
Edit Distance / Self Matching

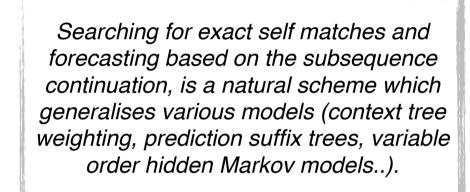
• The edit distance is the minimum total cost of edit operations (insertions, deletions, and substitutions) which transform one sequence P to another T

• It is computed by the dynamic program:

 $D(i,j) = \min \begin{cases} c(p_i \to \epsilon) + D(i-1,j) \\ c(p_i \to t_j) + D(i-1,j-1) \\ c(t_j \to \epsilon) + D(i,j-1) \end{cases}$

		S	a	t	u	r	d	a	y
	0	1	2	3	4	5	6	7	8
S	1	0	1	2	3	4	5	6	7
u	2	1	1	2	2	3	4	5	6
n	3	2	2	2	3	3	4	5	6
d	4	3	3	3	3	4	3	4	5
a	5	4	3	4	4	4	4	3	4
у	6	5	4	4	5	5	5	4	3





 $\int c(s_i \to \epsilon) + D_{\mathrm{s}}(i-1,j,k-1)$ $D_{s}(i, j, k) = \min \left\{ c(s_{i} \to s_{j}) + D_{s}(i-1, j-1, k-1) \right\}$ $c(s_j \to \epsilon) + D_{\mathrm{s}}(i, j-1, k).$

> length (4 above)

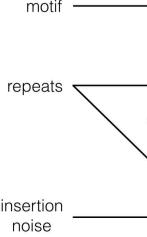
This is the key program control flow. We generalise the entire setup by replacing the constituent operations with parameterised functions. The parameters are learned end to end via gradient based optimisation.

olified Setup	MotifNet
orical symbol	learned embedding vector
it edit cost	learned edit cost function
lar distance	generalised distance vector
← distance + cost	distance ← GRU(distance, cost)
programming min	arg max w.r.t. learned scoring function
exact matching	learned weighting function averaging
itity forecast	analogy forecast

MotifNet Generalisation

The **analogy** function is an important

component. If we have seen 1, 3, 1, 12, 17, then by **analogy** after 101, 103, 101, 112 we expect to see 117.



$\Sigma = \{1, 2\}$ $\mathcal{E} = \mathbb{R}^{N_E}$ $\mathcal{C} = \mathbb{R}^{N_C}$ $\mathcal{D} = \mathbb{R}^{N_D}$ $\mathcal{O} = \mathbb{R}^{N_O}$	$,\ldots, \Sigma \}$	Dis En Ge Ge Per
Notation	Role	A
f_E	embedding	10

Notation

Notation	Role	Architecture	Mapping
f_E	embedding	lookup	$\Sigma \to \mathcal{E}$
f_D	deletion	FF	$\Sigma \to \mathcal{C}$
f_S	substitution	FF	$\Sigma \times \Sigma \to \mathcal{C}$
f_A	addition	GRU	$\mathcal{D} imes \mathcal{C} o \mathcal{D}$
f_W	scoring*	FF	$\mathcal{D} ightarrow \mathbb{R}$
$\blacktriangleright f_G$	analogy	FF	$\mathcal{D} imes \mathcal{E} o \mathcal{O}$
f_F	forecasting	FF	$\mathcal{O} ightarrow \mathbb{R}^{ \Sigma }$

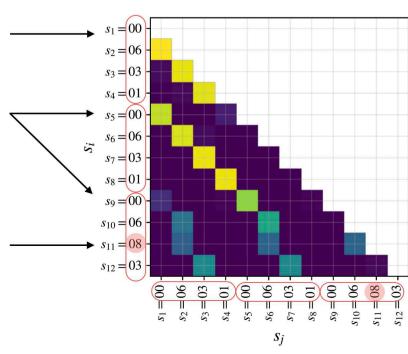
```
O_i =
```

where

 $w_{i,j,k} =$

and the forecast is g

	Suffix Tree	Edit Tree	
Edges	Symbols: Si	Matches: $s_i \rightarrow s_j$	
Nodes	Sequences	Alignments	
Fan Out	Linear (in the alphabet size)	Quadratic	
Candidate Matching Paths for Prediction	One	Many	
All Candidates Relevant?	Yes (exact matches)	No (scoring function required)	
Prediction	Direct Correlation (reoccurance)	Analogy	
Generalises the Other	No	Yes	
Theoretical Guarantees?	Yes	Not yet	
Studied?	Yes; extensively	No	
We prune the edit tree using a learn	ed heuristic function, obt	aining tractability!	



Algorithm 1 MotifNet generalised distance.

Output: D(i, j, k)

for i = 1 to |S| do for k = 1 to i do

if k = 1 then

end for

for j = 1 to i do

= 1 to i do

 $D(i \ i \ k) \leftarrow$

Input: $S = s_1 \cdot s_2 \cdots s_{|S|}, f_E, f_A, f_S, f_D, D_0$

 $D(i, j, k) \leftarrow f_A(D_0, f_S(s_i, s_j))$

 $\leftarrow f_A(D(i-1,j,k-1),f_D(s_i))$ $D_{\searrow} \leftarrow f_A(D(i-1,j-1,k-1),f_S(s_i,s_j))$

 $D' \in \{D_{\downarrow}, D_{\searrow}, D_{\rightarrow}\}$

 $\operatorname{argmax} f_W(D')$

 $D_{\rightarrow} \leftarrow f_A(D(i, j-1, k), f_D(s_j))$

The Basic (exact / slow) MotifNet

Interpretation of Elements iscrete symbol nbedding eneralised edit cost eneralised distance nultimate layer

end for • *Given the above generalised distances* D(i, j, k), *the penultimate layer is*

end if

end for

Edit Tree	
given by $s_{i+1} S(:i), \ldots \sim \text{Discrete}(f_F(O_i))$	•
$\sum_{0 \le j' < i} \sum_{0 \le k' < i} \exp(f_W(D(i, j', k')))$	
$\exp(f_W(D(i,j,k)))$	
$= \sum_{0 \le j < i} \sum_{0 \le k < i} w_{i,j,k} f_G(D(i,j,k), f_E(s_{j+1}))$	
$\sum \sum a = f \left(D(i, i, l_{0}) - f \left(a \right) \right)$	
	~

• The generalised distances D(i, j, k) are functions of an alignment sequence. • This suggests the edit tree, which differs from a suffix tree as follows:

Experiments

Table 2. Average test set negative log likelihood for a stacked LSTM, MotifNet, and their combination (see subsection 4.3) on real symbolic music problems. See subsection 6.2 for more details.

	JBM	MUS	NOT	PMD
LSTM	1.82	2.03	1.03	2.67
MotifNet	1.77	1.88	0.81	1.90
MotifNet+LSTM	1.79	1.83	0.73	1.85

These are basic CPU-only experiments, but we already improve on the LSTM. Scaling up **MotifNet** seems promising!