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Poisson Random Variable

X|λ ∼ Poisson(λ)

P (X = k|λ) = λ
k exp(−λ)/k!



Poisson Point Process

input domain

intensity function 

points

λ(x)

Λ(Ω) =area

| {z }

Ω

• Distribution over sets of points

• The number of points in a subset Ω is

N(Ω) ∼ Poisson(Λ(Ω))

Λ(Ω) =

Z
x∈Ω

λ(x)dx



Poisson Process: Likelihood Function

What is the density p(X|�,Ω) for realisation X = {xi}i=1,2,...,m ⊂ Ω?

p(X|�,Ω) = P (|X | = m|�,Ω)m!

mY

i=1

p(xi|�,Ω)

where P (|X | = m|�,Ω) , Poisson(m|Λ(Ω)),

and

p(xi|�,Ω)

p(x0|�,Ω)
= lim

✏→0

1− Poisson(0|Λ([xi,xi + ✏]))

1− Poisson(0|Λ([x0,x0 + ✏]))
| {z }

Pr[zero points near x0]

=
�(xi)

�(x0)

⇒ p(xi|�,Ω) =
�(xi)

Λ(Ω)
.

So the likelihood simplifies to:

p(X|�,Ω) =
Λ(Ω)m exp(−Λ(Ω))

m!
m!

mY

i=1

�(xi)

Λ(Ω)
= exp(−Λ(Ω))

mY

i=1

�(xi).



Squared Link Function: 

Regularised Maximum Likelihood
1

modified  

RKHS

intractable integral  

in the likelihood

Writing out the integral in the likelihood we get

ln p(X|λ,Ω) =
mX

i=1

log λ(xi)�

Z

x2Ω

λ(x)dx

which, by parameterising λ(x) = 1
2f

2(x), becomes

/ 2

mX

i=1

log f(xi)�
1

2

Z

x2Ω

f2(x)dx

| {z }

,kfk2
L2(Ω)

.

Regularised maximum likelihood with regulariser (log prior) kfk
2
H

gives

f⇤ , argmax
f

= 2

mX

i=1

log f(xi)�
1

2

⇣

kfk
2
L2(Ω) + kfk

2
H

⌘

| {z }

kfk2

,H(k,Ω)

.

Can easily solve with the theory of reproducing kernel Hilbert spaces.

[1] Flaxman, S, Teh, YW, and Sejdinovic, D,

Poisson Intensity Estimation with Reproducing Kernels. 

AISTATS 2017.

permanental 

process for f ~ GP



Summary so Far

To summarise, we handle the intractable integral by

1. letting λ(x) = 1
2f

2(x) so that the integral becomes a function norm

2. effectively “removing” the integral from the likelihood

3. including it in the in the regulariser via

kfk
2
H(k,Ω) , kfk

2
L2(Ω) + kfk

2
H
.

Solution is then trivial given the reproducing kernel of H(k,Ω).



Regularisation Operator Approach

The norm is

kfk
2
H(k,Ω) , kfk

2
L2(Ω) + kfk

2
H
.

define the regularisation operator

kfk
2
H

, kψfk
2
L2(Ω) ,

use the reproducing property

f(x) , hf, k̃(x)iH(k,Ω),

we get the (typically partial differential) equation

k̃(x, ·) + ψ∗ψk̃(x, ·) = δ(·)

Depending on ψ this is e.g. a Poisson or Klein-Gordon equation, etc.

• Leads to useful closed form expressions and algorithms from physics.

• Unfortunately it’s unclear how to make it probabilistic (Gaussian process)!

Duffy, D. Green’s Functions with Applications. 2015 book.


Thomas-Agnan, C. Computing a Family of Green’s Functions for Statistical Applications. 1993 tech report.


Sollich, P and Williams, C. K. I. Understanding Gaussian Process Regression Using the Equivalent Kernel. NIPS 2005. 



Squared Link Function: 

Gaussian Process Prior

the same   

“equivalent kernel”

By Mercer’s theorem, we may decompose the covariance k as

k(x,y) =

N
X

i=1

λiφi(x)φi(y)

Gaussian process distributed f may therefore be written

f(x) = w
>
Φ(x)

where w ⇠ N (0, diag(λ1,λ2, . . . ,λN )).

We can then derive the (Laplace) approximate predictive mean and variance

E [f(x⇤)|X,Ω, k] ⇡
m
X

i=1

αik̃(xi,x
⇤)

Var [f(x⇤)|X,Ω, k] ⇡ k̃(x⇤,x⇤)�
�

k̃(x⇤, X)�α

�

S�1
�

α
>
� k̃(X,x⇤)

�

,

where

α̂ = argmin
α

m
X

i=1

logα2

i
+

1

2
α

>K̃α,

S =
�

k̃(X,X)� (αα
>) + 2I

�

.

no representer  

theorem required



Model Selection:  

Marginal Likelihood
The marginal likelihood is more cumbersome to write out,  

so we visualise a decomposition of it here:



Model Selection:  

Marginal Likelihood

we observe a strong relationship 

between the marginal likelihood 

and the empirical predictive power 

=> ML-II model selection works



Summary

• Previous work on log-Gaussian Cox processes has been 

hampered by computational problems


• We considered the poisson point process with intensity which 

is the square of a Gaussian process


• We demonstrated the advantages of a squared link function 

for the Cox process with Gaussian process prior


• The result is a simple and fast Bayesian method


• This is one of several recent papers which redress the balance 

w.r.t. the extensively studied log-Gaussian Cox process


