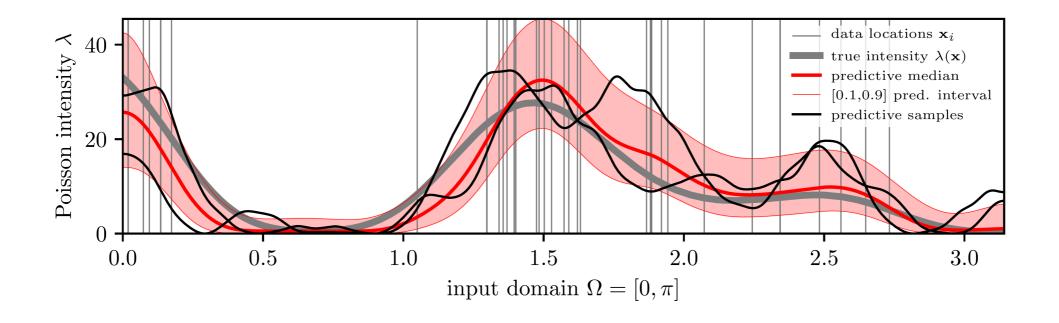
Fast Bayesian Intensity Estimation for the Permanental Process

Christian J. Walder^{1,2} and Adrian N. Bishop^{1,2,3}

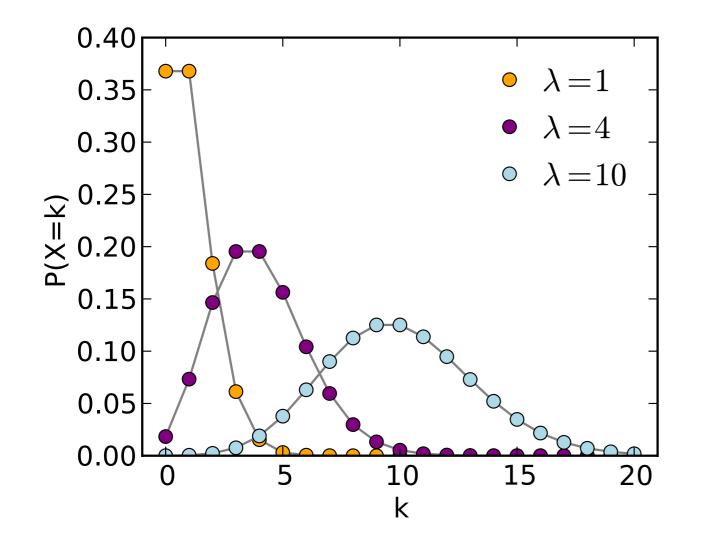
¹ Data61, CSIRO, Australia ² The Australian National University ³ University of Technology Sydney



Overview

- Poisson distribution
- Poisson point process
 - Definition
 - Likelihood
- Squared link function:
 - Reproducing kernel Hilbert space norm regularisation
 - Gaussian process prior
- Experiments
- Summary

Poisson Random Variable

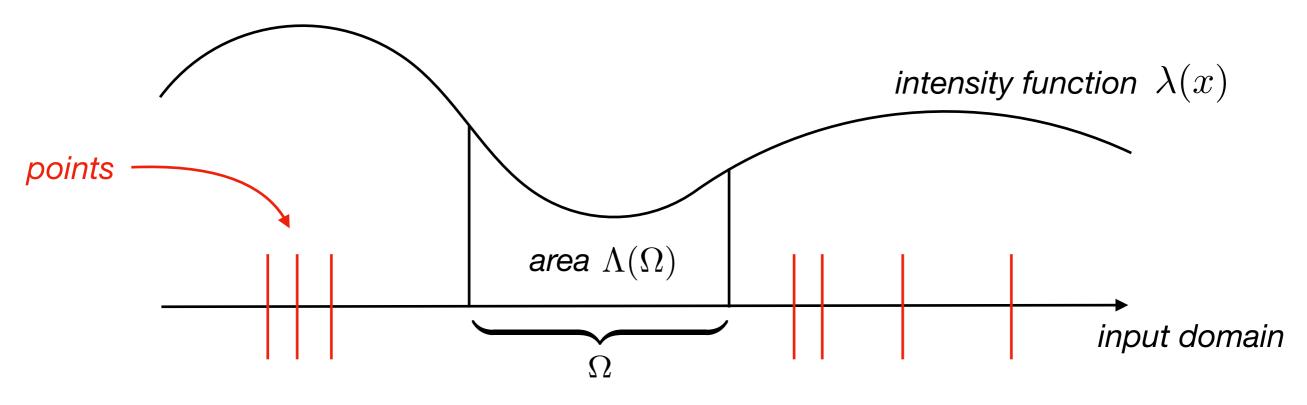


 $X|\lambda \sim \text{Poisson}(\lambda)$ $P(X = k|\lambda) = \lambda^k \exp(-\lambda)/k!$

Poisson Point Process

- Distribution over sets of points
- The number of points in a subset Ω is

$$N(\Omega) \sim \text{Poisson}(\Lambda(\Omega))$$
$$\Lambda(\Omega) = \int_{\boldsymbol{x} \in \Omega} \lambda(\boldsymbol{x}) d\boldsymbol{x}$$



Poisson Process: Likelihood Function

What is the density $p(\mathcal{X}|\lambda, \Omega)$ for realisation $\mathcal{X} = \{x_i\}_{i=1,2,...,m} \subset \Omega$?

$$p(\mathcal{X}|\lambda,\Omega) = P(|\mathcal{X}| = m|\lambda,\Omega) \, m! \prod_{i=1}^{m} p(\boldsymbol{x}_i|\lambda,\Omega)$$

where $P(|\mathcal{X}| = m | \lambda, \Omega) \triangleq \text{Poisson}(m | \Lambda(\Omega)),$

and

$$\begin{split} \frac{p(\boldsymbol{x}_i|\lambda,\Omega)}{p(\boldsymbol{x}_0|\lambda,\Omega)} &= \lim_{\epsilon \to 0} \frac{1 - \operatorname{Poisson}(0|\Lambda([\boldsymbol{x}_i, \boldsymbol{x}_i + \epsilon]))}{1 - \underbrace{\operatorname{Poisson}(0|\Lambda([\boldsymbol{x}_0, \boldsymbol{x}_0 + \epsilon]))}_{\operatorname{Pr}[\text{zero points near } \boldsymbol{x}_0]} &= \frac{\lambda(\boldsymbol{x}_i)}{\lambda(\boldsymbol{x}_0)} \end{split}$$

$$\Rightarrow \quad p(\boldsymbol{x}_i|\lambda,\Omega) = \frac{\lambda(\boldsymbol{x}_i)}{\Lambda(\Omega)}. \end{split}$$

So the likelihood simplifies to:

$$p(\mathcal{X}|\lambda,\Omega) = \frac{\Lambda(\Omega)^m \exp(-\Lambda(\Omega))}{m!} m! \prod_{i=1}^m \frac{\lambda(\boldsymbol{x}_i)}{\Lambda(\Omega)} \left(= \exp(-\Lambda(\Omega)) \prod_{i=1}^m \lambda(\boldsymbol{x}_i).\right)$$

Squared Link Function: Regularised Maximum Likelihood

Writing out the integral in the likelihood we get

$$\ln p(\mathcal{X}|\lambda,\Omega) = \sum_{i=1}^{m} \log \lambda(\boldsymbol{x}_{i}) - \int_{\boldsymbol{x}\in\Omega} \lambda(\boldsymbol{x}) d\boldsymbol{x}$$

which, by parameterising $\lambda(\boldsymbol{x}) = \frac{1}{2}f^{2}(\boldsymbol{x})$, becomes
permanental $\propto 2\sum_{i=1}^{m} \log f(\boldsymbol{x}_{i}) - \frac{1}{2} \underbrace{\int_{\boldsymbol{x}\in\Omega} f^{2}(\boldsymbol{x}) d\boldsymbol{x}}_{\triangleq \|f\|_{L_{2}(\Omega)}^{2}}$.

Regularised maximum likelihood with regulariser (log prior) $||f||_{\mathcal{H}}^2$ gives

$$f^* \triangleq \arg\max_f = 2\sum_{i=1}^m \log f(\boldsymbol{x}_i) - \frac{1}{2} \underbrace{\left(\|f\|_{L_2(\Omega)}^2 + \|f\|_{\mathcal{H}}^2 \right)}_{\|f\|_{\triangleq \mathcal{H}(k,\Omega)}^2} \cdot \underbrace{\mathsf{modified}}_{\mathsf{RKHS}}$$

Can easily solve with the theory of reproducing kernel Hilbert spaces.

Flaxman, S, Teh, YW, and Sejdinovic, D,
 Poisson Intensity Estimation with Reproducing Kernels.
 AISTATS 2017.

Summary so Far

To summarise, we handle the intractable integral by

- 1. letting $\lambda(\boldsymbol{x}) = \frac{1}{2}f^2(\boldsymbol{x})$ so that the integral becomes a function norm
- 2. effectively "removing" the integral from the likelihood
- 3. including it in the in the regulariser via

$$\|f\|_{\mathcal{H}(k,\Omega)}^2 \triangleq \|f\|_{L_2(\Omega)}^2 + \|f\|_{\mathcal{H}}^2.$$

Solution is then trivial given the reproducing kernel of $\mathcal{H}(k, \Omega)$.

Regularisation Operator Approach

The norm is

$$\|f\|_{\mathcal{H}(k,\Omega)}^{2} \triangleq \|f\|_{L_{2}(\Omega)}^{2} + \|f\|_{\mathcal{H}}^{2}.$$

define the regularisation operator

$$\left\|f\right\|_{\mathcal{H}}^{2} \triangleq \left\|\psi f\right\|_{L_{2}(\Omega)}^{2},$$

use the reproducing property

$$f(\boldsymbol{x}) \triangleq \langle f, \tilde{k}(\boldsymbol{x}) \rangle_{\mathcal{H}(k,\Omega)},$$

we get the (typically partial differential) equation

$$\tilde{k}(\boldsymbol{x},\cdot) + \psi^* \psi \tilde{k}(\boldsymbol{x},\cdot) = \delta(\cdot)$$

Depending on ψ this is *e.g.* a Poisson or Klein-Gordon equation, *etc.*

- Leads to useful closed form expressions and algorithms from physics.
- Unfortunately it's unclear how to make it probabilistic (Gaussian process)!

Duffy, D. Green's Functions with Applications. 2015 book.

Thomas-Agnan, C. *Computing a Family of Green's Functions for Statistical Applications.* 1993 tech report. Sollich, P and Williams, C. K. I. *Understanding Gaussian Process Regression Using the Equivalent Kernel.* NIPS 2005.

Squared Link Function: Gaussian Process Prior

By Mercer's theorem, we may decompose the covariance k as

$$k(oldsymbol{x},oldsymbol{y}) = \sum_{i=1}^N \lambda_i \phi_i(oldsymbol{x}) \phi_i(oldsymbol{y})$$

Gaussian process distributed f may therefore be written

$$f(x) = \boldsymbol{w}^{\top} \Phi(\boldsymbol{x})$$

where $\boldsymbol{w} \sim \mathcal{N}(0, \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)).$

We can then derive the (Laplace) approximate predictive mean and variance

a kankaaanta

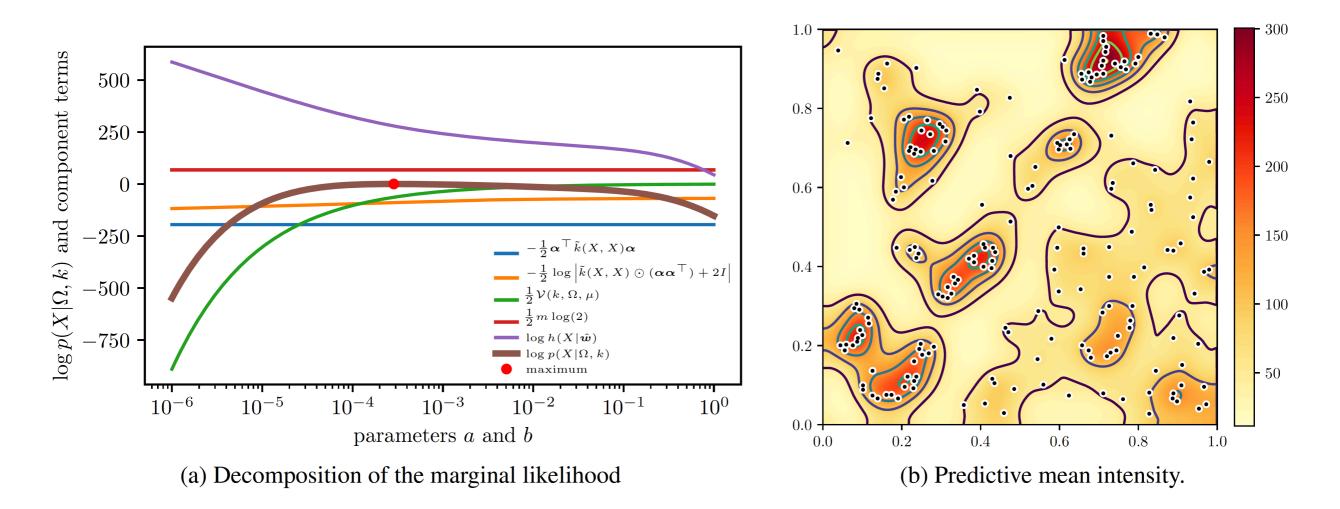
$$S = (\tilde{k}(X, X) \odot (\boldsymbol{\alpha} \boldsymbol{\alpha}^{\top}) + 2I).$$

i=1

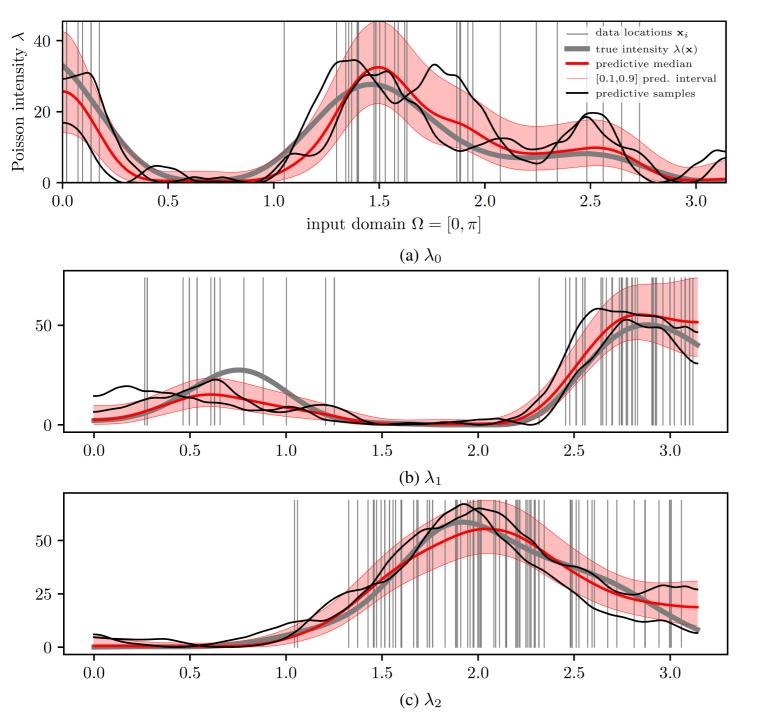
 $\boldsymbol{\alpha}$

Model Selection: Marginal Likelihood

The marginal likelihood is more cumbersome to write out, so we visualise a decomposition of it here:

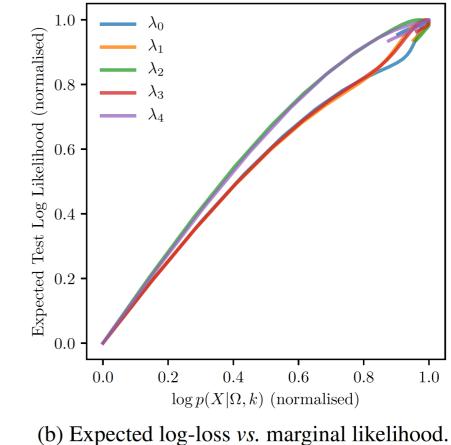


Model Selection: Marginal Likelihood



we observe a strong relationship between the marginal likelihood and the empirical predictive power

=> ML-II model selection works



Summary

- Previous work on log-Gaussian Cox processes has been hampered by computational problems
- We considered the poisson point process with intensity which is the square of a Gaussian process
- We demonstrated the advantages of a squared link function for the Cox process with Gaussian process prior
- The result is a simple and fast Bayesian method
- This is one of several recent papers which redress the balance w.r.t. the extensively studied log-Gaussian Cox process