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Poisson Random Variable
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Poisson Point Process

e Distribution over sets of points

e The number of points in a subset (2 is
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Poisson Process: Likelihood Function

What is the density p(X|A, Q) for realisation X = {x;},_, , C Q7

..... m

p(X A, Q) = P(|X| = m|A, ) m! | [ p(a:lA, Q)
i=1
where P(|X| = m|\, Q) = Poisson(m|A(Q)),

and

p(xz;| A, Q) i 1 — Poisson(0|A([x;, x; +€]))  A(x;)
p(xo|X, Q) e=01 — Poisson(0|A([xo, zo +€]))  A(xo)
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So the likelihood simplifies to:
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Squared Link Function:
Regularised Maximum Likelihood

Writing out the integral in the likelihood we get

1

intractable integral
k/ in the likelihood

which, by parameterising A(x) = 1 f?(z), becomes
. 1
permanental x 2 ) log f(@m;) — 5 / 2 (x)dx
. 2 Jzeq
process for f ~ GP i=1 JxE y
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Regularised maximum likelihood with regulariser (log prior) || f Hi gives

X ™ 1 .
7= arg max = QZIOg f@i) — 5 (Hf”iz(sz) + Hint) - modified
i=1 ~ d RKHS

||f||2

29 (k,Q)
Can easily solve with the theory of reproducing kernel Hilbert spaces.

[1] Flaxman, S, Teh, YW, and Sejdinovic, D,
Poisson Intensity Estimation with Reproducing Kernels.
AISTATS 2017.



Summary so Far

To summarise, we handle the intractable integral by
1. letting A(x) = % f2(x) so that the integral becomes a function norm
2. effectively “removing” the integral from the likelihood

3. including it in the in the regulariser via
2 2 2
115k = N2, + I1FI1 -

Solution is then trivial given the reproducing kernel of H(k, §2).



Regularisation Operator Approach

The norm 1is

2
HfH’QH(k,Q) . HfHQLQ(Q) + 1115 -

define the regularisation operator

115 & 1912, 0 -

use the reproducing property

f() & (f, k(@) nir.0)
we get the (typically partial differential) equation
k(x, ) + U k(. ) = ()
Depending on % this is e.g. a Poisson or Klein-Gordon equation, etc.

e Leads to useful closed form expressions and algorithms from physics.

e Unfortunately it’s unclear how to make it probabilistic (Gaussian process)!

Duffy, D. Green’s Functions with Applications. 2015 book.
Thomas-Agnan, C. Computing a Family of Green’s Functions for Statistical Applications. 1993 tech report.
Sollich, P and Williams, C. K. |. Understanding Gaussian Process Regression Using the Equivalent Kernel. NIPS 2005.



Squared Link Function:
Gaussian Process Prior

By Mercer’s theorem, we may decompose the covariance k as
k(,y) =) Nidi(z)i(y)

Gaussian process distributed f may therefore be written

fla) =w'o()
where w ~ N(O, diag()\l, )\2, ceey AN))

We can then derive the (Laplace) approximate predictive mean and variance
no representer

m ~ / i
E[f(a)|X, 0k ~ > ak(mi,z) « theorem required
1=1
Var [f(@")| X, Q, k] ~ k(z*, &) — (k(z*, X) 0 a) S~ (o @ k(X,z)),
where
the same
s 1 -~ “equivalent kernel”

S = (k(X,X)® (aa’) +2I).



Model Selection:

Marginal Likelihood

The marginal likelihood is more cumbersome to write out,

SO we visualise a decomposition of it here:
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(a) Decomposition of the marginal likelihood
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Poisson intensity A

Model Selection:
Marginal Likelihood
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Summary

Previous work on log-Gaussian Cox processes has been
hampered by computational problems

We considered the poisson point process with intensity which
Is the square of a Gaussian process

We demonstrated the advantages of a squared link function
for the Cox process with Gaussian process prior

The result is a simple and fast Bayesian method

This is one of several recent papers which redress the balance
w.r.t. the extensively studied log-Gaussian Cox process



